Properties of Böröczky tilings in high-dimensional hyperbolic spaces

نویسندگان

  • Nikolai P. Dolbilin
  • Dirk Frettlöh
چکیده

In this paper we consider families of Böröczky tilings in hyperbolic space in arbitrary dimension, study some basic properties and classify all possible symmetries. In particular, it is shown that these tilings are non-crystallographic, and that there are uncountably many tilings with a fixed prototile.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of Generalized Böröczki-type Tilings in High Dimensional Hyperbolic Spaces

In this paper we consider families of Böröczki-like tilings in hyperbolic space in arbitrary dimension, study some basic properties and classify all possible symmetries. In particular, it is shown that these tilings are non-crystallographic.

متن کامل

Trading spaces: building three-dimensional nets from two-dimensional tilings.

We construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S (2)), Euclidean (E (2)) and hyperbolic (H (2)) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those...

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach

‎The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]‎. ‎In [1]‎, ‎Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups ‎and gyrovector spaces for dealing with the Lorentz group and its ‎underlying hyperbolic geometry‎. ‎They defined the Chen addition and then Chen model of hyperbolic geomet...

متن کامل

Fusion: a General Framework for Hierarchical Tilings of R

We introduce a formalism for handling general spaces of hierarchical tilings, a category that includes substitution tilings, Bratteli-Vershik systems, S-adic transformations, and multi-dimensional cut-and-stack transformations. We explore ergodic, spectral and topological properties of these spaces. We show that familiar properties of substitution tilings carry over under appropriate assumption...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010